织梦CMS - 轻松建站从此开始!

罗索

大内高手—内存模型

jackyhwei 发布于 2011-12-02 22:04 点击:次 
了解linux的 内存模型,或许不能让你大幅度提高编程能力,但是作为一个基本知识点应该熟悉。坐火车外出旅行时,即时你对沿途的地方一无所知,仍然可以到达目标地。但是 你对整个路途都很比较清楚的话,每到一个站都知道自己在哪里,知道当地的风土人情,对比一下所见所
TAG:

转载时请注明出处和作者联系方式:http://blog.csdn.net/absurd

作者联系方式:李先静 <xianjimli at hotmail dot com>

更新时间:2007-7-9

了解linux的 内存模型,或许不能让你大幅度提高编程能力,但是作为一个基本知识点应该熟悉。坐火车外出旅行时,即时你对沿途的地方一无所知,仍然可以到达目标地。但是 你对整个路途都很比较清楚的话,每到一个站都知道自己在哪里,知道当地的风土人情,对比一下所见所想,旅程可能更有趣一些。

类似的,了解linux的内存模型,你知道每块内存,每个变量,在系统中处于什么样的位置。这同样会让你心情愉快,知道这些,有时还会让你的生活轻更松些。看看变量的地址,你可以大致断定这是否是一个有效的地址。一个变量被破坏了,你可以大致推断谁是犯罪嫌疑人。

Linux的内存模型,一般为:

地址

作用

说明

>=0xc000 0000

内核虚拟存储器

用户代码不可见区域

<0xc000 0000

Stack(用户栈)

指向栈顶

 

 

 空闲内存

>=0x4000 0000

文件映射区

 

<0x4000 0000

 >↑

 

空闲内存

 

 

运行时堆)

通过 brk/sbrk 系统调用扩大堆,向上增长。

 

.data、.bss(读写段)

从可执行文件中加载

>=0x0804 8000

.init、.text、.rodata(只读段)

从可执行文件中加载

<0x0804 8000

保留区域

 

很多书上都有类似的描述,本图取自于《深入理解计算机系统》p603,略做修改。本图比较清析,很容易理解,但仍然有两点不足。下面补充说明一下:

1.第一点是关于运行时堆的。

为说明这个问题,我们先运行一个测试程序,并观察其结果:

  1. #include <stdio.h> 
  2.  
  3. int main(int argc, char* argv[]) 
  4.     int  first = 0; 
  5.     int* p0 = malloc(1024); 
  6.     int* p1 = malloc(1024 * 1024); 
  7.     int* p2 = malloc(512 * 1024 * 1024 ); 
  8.     int* p3 = malloc(1024 * 1024 * 1024 ); 
  9.     printf("main=%p print=%p/n", main, printf); 
  10.     printf("first=%p/n", &first); 
  11.     printf("p0=%p p1=%p p2=%p p3=%p/n", p0, p1, p2, p3); 
  12.  
  13.     getchar(); 
  14.  
  15.     return 0; 

运行后,输出结果为:

main=0x8048404 print=0x8048324

first=0xbfcd1264

p0=0x9253008 p1=0xb7ec0008 p2=0x97ebf008 p3=0x57ebe008

 

l         main和print两个函数是代码段(.text)的,其地址符合表一的描述。

l         first是第一个临时变量,由于在first之前还有一些环境变量,它的值并非0xbfffffff,而是0xbfcd1264,这是正常的。

l         p0是在堆中分配的,其地址小于0x4000 0000,这也是正常的。

l         但p1和p2也是在堆中分配的,而其地址竟大于0x4000 0000,与表一描述不符。

原因在于:运行时堆的位置与内存管理算法相关,也就是与malloc的实现相关。关于内存管理算法的问题,我们在后继文章中有详细描述,这里只作简要说明。在glibc实现的内存管理算法中,Malloc小块内存是在小于0x4000 0000的内存中分配的,通过brk/sbrk不断向上扩展,而分配大块内存,malloc直接通过系统调用mmap实现,分配得到的地址在文件映射区,所以其地址大于0x4000 0000。

从maps文件中可以清楚的看到一点:

00514000-00515000 r-xp 00514000 00:00 0

00624000-0063e000 r-xp 00000000 03:01 718192     /lib/ld-2.3.5.so

0063e000-0063f000 r-xp 00019000 03:01 718192     /lib/ld-2.3.5.so

0063f000-00640000 rwxp 0001a000 03:01 718192     /lib/ld-2.3.5.so

00642000-00766000 r-xp 00000000 03:01 718193     /lib/libc-2.3.5.so

00766000-00768000 r-xp 00124000 03:01 718193     /lib/libc-2.3.5.so

00768000-0076a000 rwxp 00126000 03:01 718193     /lib/libc-2.3.5.so

0076a000-0076c000 rwxp 0076a000 00:00 0

08048000-08049000 r-xp 00000000 03:01 1307138    /root/test/mem/t.exe

08049000-0804a000 rw-p 00000000 03:01 1307138    /root/test/mem/t.exe

09f5d000-09f7e000 rw-p 09f5d000 00:00 0          [heap]

57e2f000-b7f35000 rw-p 57e2f000 00:00 0

b7f44000-b7f45000 rw-p b7f44000 00:00 0

bfb2f000-bfb45000 rw-p bfb2f000 00:00 0          [stack]

2. 第二是关于多线程的。

现在的应用程序,多线程的居多。表一所描述的模型无法适用于多线程环境。按表一所述,程序最多拥有上G的栈空间,事实上,在多线程情况下,能用的栈空间是非常有限的。为了说明这个问题,我们再看另外一个测试:

  1. #include <stdio.h> 
  2. #include <pthread.h> 
  3. void* thread_proc(void* param) 
  4.     int  first = 0; 
  5.     int* p0 = malloc(1024); 
  6.     int* p1 = malloc(1024 * 1024); 
  7.     printf("(0x%x): first=%p/n",    pthread_self(), &first); 
  8.     printf("(0x%x): p0=%p p1=%p /n", pthread_self(), p0, p1); 
  9.     return 0; 
  10.  
  11. #define N 5 
  12. int main(int argc, char* argv[]) 
  13.     int first = 0; 
  14.     int i= 0; 
  15.     void* ret = NULL; 
  16.     pthread_t tid[N] = {0}; 
  17.   
  18.     printf("first=%p/n", &first); 
  19.     for(i = 0; i < N; i++) 
  20.     { 
  21.         pthread_create(tid+i, NULL, thread_proc, NULL); 
  22.     } 
  23.   
  24.     for(i = 0; i < N; i++) 
  25.     { 
  26.         pthread_join(tid[i], &ret); 
  27.     } 
  28.     return 0; 

运行后,输出结果为:

first=0xbfd3d35c

(0xb7f2cbb0): first=0xb7f2c454

(0xb7f2cbb0): p0=0x84d52d8 p1=0xb4c27008

(0xb752bbb0): first=0xb752b454

(0xb752bbb0): p0=0x84d56e0 p1=0xb4b26008

(0xb6b2abb0): first=0xb6b2a454

(0xb6b2abb0): p0=0x84d5ae8 p1=0xb4a25008

(0xb6129bb0): first=0xb6129454

(0xb6129bb0): p0=0x84d5ef0 p1=0xb4924008

(0xb5728bb0): first=0xb5728454

(0xb5728bb0): p0=0x84d62f8 p1=0xb7e2c008

 

我们看一下:

主线程与第一个线程的栈之间的距离:0xbfd3d35c - 0xb7f2c454=0x7e10f08=126M

第一个线程与第二个线程的栈之间的距离:0xb7f2c454 - 0xb752b454=0xa01000=10M

其它几个线程的栈之间距离均为10M。

也就是说,主线程的栈空间最大为126M,而普通线程的栈空间仅为10M,超这个范围就会造成栈溢出。

栈溢出的后果是比较严重的,或者出现Segmentation fault错误,或者出现莫名其妙的错误。

 

(李先静)
本站文章除注明转载外,均为本站原创或编译欢迎任何形式的转载,但请务必注明出处,尊重他人劳动,同学习共成长。转载请注明:文章转载自:罗索实验室 [http://www.rosoo.net/a/201112/15399.html]
本文出处:blog.csdn.net/absurd 作者:李先静 原文
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
将本文分享到微信
织梦二维码生成器
推荐内容