织梦CMS - 轻松建站从此开始!

罗索

linux SD卡驱动分析

落鹤生 发布于 2012-07-16 10:05 点击:次 
蓝色部分是遵照 SD 卡协议的 SD 卡启动过程,包括了非激活模式、卡识别模式和数据传输模式三种模式共九种状态的转换,你需要参照相关规范来理解。可以先参考下面三章图对模式和状态,以及状态转换有个初步了解。
TAG:

1. 硬件基础:

SD/MMC/SDIO 概念区分概要

SD (Secure Digital )与 MMC (Multimedia Card )

SD 是一种 flash memory card 的标准,也就是一般常见的 SD 记忆卡,而 MMC 则是较早的一种记忆卡标准,目前已经被 SD 标准所取代。 

SDIO 是目前我们比较关心的技术,SDIO 故名思义,就是 SD 的 I/O 接口(interface )的意思,不过这样解释可能还有点抽像。更具体的说明,SD 本来是记忆卡的标准,但是现在也可以把 SD 拿来插上一些外围接口使用,这样的技术便是 SDIO 。

所以 SDIO 本身是一种相当单纯的技术,透过 SD 的 I/O 接脚来连接外部外围,并且透过 SD 上的 I/O 数据接位与这些外围传输数据,而且 SD 协会会员也推出很完整的 SDIO stack 驱动程序,使得 SDIO 外围(我们称为 SDIO 卡)的开发与应用变得相当热门。

现在已经有非常多的手机或是手持装置都支持 SDIO 的功能(SD 标准原本就是针对 mobile device 而制定),而且许多 SDIO 外围也都被开发出来,让手机外接外围更加容易,并且开发上更有弹性(不需要内建外围)。目前常见的 SDIO 外围(SDIO 卡)有:

· Wi-Fi card (无线网络卡)

· CMOS sensor card (照相模块)

· GPS card

· GSM/GPRS modem card

· Bluetooth card

· Radio/TV card (很好玩)

SDIO 的应用将是未来嵌入式系统最重要的接口技术之一,并且也会取代目前 GPIO 式的 SPI 接口。

SD/SDIO 的传输模式

SD 传输模式有以下 3 种:

·   SPI mode (required )

·   1-bit mode

·   4-bit mode

SDIO 同样也支持以上 3 种传输模式。依据 SD 标准,所有的 SD (记忆卡)与 SDIO (外围)都必须支持 SPI mode ,因此 SPI mode 是「required 」。此外,早期的 MMC 卡(使用 SPI 传输)也能接到 SD 插糟(SD slot ),并且使用 SPI mode 或 1-bit mode 来读取。

SD 的 MMC Mode

SD 也能读取 MMC 内存,虽然 MMC 标准上提到,MMC 内存不见得要支持 SPI mode (但是一定要支持 1-bit mode ),但是市面上能看到的 MMC 卡其实都有支持 SPI mode 。因此,我们可以把 SD 设定成 SPI mode 的传输方式来读取 MMC 记忆卡。

SD 的 MMC Mode 就是用来读取 MMC 卡的一种传输模式。不过,SD 的 MMC Mode 虽然也是使用 SPI mode ,但其物理特性仍是有差异的:

·  MMC 的 SPI mode 最大传输速率为 20 Mbit/s ;

·  SD 的 SPI mode 最大传输速率为 25 Mbit/s 。

为避免混淆,有时也用 SPI/MMC mode 与 SPI/SD mode 的写法来做清楚区别。

2.MMC 子系统的基本框架结构:

很遗憾,内核没有为我们提供关于MMC 子系统的文档,在谷歌上搜索了很多,也没有找到相关文章。只能自己看代码分析了,可能有很多理解不对的地方,希望研究过这方面的朋友多邮件交流一下。

MMC 子系统的代码在kernel/driver/MMC 下,目前的MMC 子系统支持一些形式的记忆卡:SD,SDIO,MMC. 由于笔者对SDIO 的规范不是很清楚,后面的分析中不会涉及。MMC 子系统范围三个部分:

HOST 部分是针对不同主机的驱动程序,这一部是驱动程序工程师需要根据自己的特点平台来完成的。

CORE 部分: 这是整个MMC 的核心存,这部分完成了不同协议和规范的实现,并为HOST 层的驱动提供了接口函数。

CARD 部分:因为这些记忆卡都是块设备,当然需要提供块设备的驱动程序,这部分就是实现了将你的SD 卡如何实现为块设备的。

3.HOST 层分析:

HOST 层实现的就是我们针对特定主机的驱动程序,这里以mini2440 的s3cmci.c 为例子进行分析,我们先采用platform_driver_register(&s3cmci_2440_driver) 注册了一个平台设备,接下来重点关注probe 函数。在这个函数总,我们与CORE 的联系是通过下面三句实现的。首先分配一个mmc_host 结构体,注意sizeof(struct s3cmci_host) ,这样就能在mmc_host 中找到了s3cmci_host ,嵌入结构和被嵌入的结构体能够找到对方在Linux 内核代码中的常用技术了。接下来为mmc->pos 赋值, s3cmci_ops 结构实现了几个很重要的函数,待会我一一介绍。中间还对mmc 结构的很多成员进行了赋值,最后将mmc 结构加入到MMC 子系统,mmc_alloc_host ,以及mmc_add_host 的具体做了什么事情,我们在下节再分析,这三句是些MMC 层驱动必须包含的。

mmc = mmc_alloc_host(sizeof(struct s3cmci_host), &pdev->dev);

mmc->ops = &s3cmci_ops;

……………

s3cmci_ops 中包含了四个函数:

static struct mmc_host_ops s3cmci_ops = {

       .request  = s3cmci_request,

       .set_ios   = s3cmci_set_ios,

       .get_ro          = s3cmci_get_ro,

       .get_cd          = s3cmci_card_present,

};

我们从简单的开始分析 , 这些函数都会在 core 部分被调用:

s3cmci_get_ro: 这个函数通过从 GPIO 读取,来判断我们的卡是否是写保护的

s3cmci_card_present : 这个函数通过从 GPIO 读取来判断卡是否存在

s3cmci_set_ios : s3cmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)依据核心层传递过来的 ios ,来设置硬件 IO, 包括引脚配置,使能时钟,和配置总线带宽。

s3cmci_request : 这个 函数是最主要,也最复杂的函数,实现了命令和数据的发送和接收,当 CORE 部分需要发送命令或者传输数据时,都会调用这个函数,并传递 mrq 请求。

  1. static void s3cmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 
  2.        struct s3cmci_host *host = mmc_priv(mmc); 
  3.        host->status = "mmc request"
  4.        host->cmd_is_stop = 0; 
  5.        host->mrq = mrq; 
  6.        if (s3cmci_card_present(mmc) == 0) { 
  7.               dbg(host, dbg_err, "%s: no medium present/n", __func__); 
  8.               host->mrq->cmd->error = -ENOMEDIUM; 
  9.               mmc_request_done(mmc, mrq);// 如果卡不存在,就终止请求 
  10.        } else 
  11.               s3cmci_send_request(mmc); 

接下来看 s3cmci_send_request(mmc) :

这个函数先判断一下请求时传输数据还是命令, 如果是数据的话:

先调用 s3cmci_setup_data 来对 S3C2410_SDIDCON 寄存器进行设置,然后设置 SDITIMER 寄存器这就设置好了总线宽度,是否使用 DMA, ,并启动了数据传输模式,并且使能了下面这些中断:

  1. imsk = S3C2410_SDIIMSK_FIFOFAIL | S3C2410_SDIIMSK_DATACRC | 
  2.               S3C2410_SDIIMSK_DATATIMEOUT | S3C2410_SDIIMSK_DATAFINISH; 

解析来判断是否是采用 DMA 进行数据传输还是采用 FIFO 进行数据传输

  1. if (host->dodma) //because host->dodma = 0,so we don't use it 
  2. res = s3cmci_prepare_dma(host, cmd->data);// 准备 DMA 传输, 
  3. else 
  4. res = s3cmci_prepare_pio(host, cmd->data);.// 准备 FIFO 传输 

如果是命令的话: 则调用 s3cmci_send_command ()这个函数是命令发送的函数,和 datesheet 上描述的过程差不多 , 关于 SD 规范中命令的格式,请参考参考资料 1.

 

  1. writel(cmd->arg, host->base + S3C2410_SDICMDARG);/* 先写参数寄存器*/ 
  2. ccon  = cmd->opcode & S3C2410_SDICMDCON_INDEX;// 确定命令种类 
  3. ccon |= S3C2410_SDICMDCON_SENDERHOST | S3C2410_SDICMDCON_CMDSTART; 
  4. /*with start 2bits*/ 
  5. if (cmd->flags & MMC_RSP_PRESENT) 
  6. ccon |= S3C2410_SDICMDCON_WAITRSP; 
  7. /*wait rsp*/ 
  8. if (cmd->flags & MMC_RSP_136) 
  9. ccon |= S3C2410_SDICMDCON_LONGRSP; 
  10. // 确定 respose 的种类 
  11. writel(ccon, host->base + S3C2410_SDICMDCON); 

命令通道分析完了,我们分析数据通道,先分析采用 FIFO 方式传输是怎么样实现的。

先分析 s3cmci_prepare_pio(host, cmd->data)

根据 rw 来判断是读还是写

  1. if (rw) { 
  2. do_pio_write(host); 
  3. /* Determines SDI generate an interrupt if Tx FIFO fills half*/ 
  4. enable_imask(host, S3C2410_SDIIMSK_TXFIFOHALF); 
  5. else { 
  6. enable_imask(host, S3C2410_SDIIMSK_RXFIFOHALF|S3C2410_SDIIMSK_RXFIFOLAST); 

如果是写数据到 SD 的话,会调用 do_pio_write, 往 FIFO 中填充数据。当 64 字节的 FIFO 少于 33 字节时就会产生中断。如果是从 SD 读数据,则先使能中断,当 FIFO 多于 31 字节时时,则会调用中断服务程序,中断服务程序中将会调用 do_pio_read FIFO 的数据读出。

接下来分析 do_pio_write :

to_ptr = host->base + host->sdidata;

fifo_free(host) //用来检测 fifo 剩余空间

while ((fifo = fifo_free(host)) > 3) {

                   if (!host->pio_bytes) {

                            res = get_data_buffer(host, &host->pio_bytes,

                   /* If we have reached the end of the block, we have to

                     * write exactly the remaining number of bytes.  If we

                     * in the middle of the block, we have to write full

                     * words, so round down to an even multiple of 4. */

                   if (fifo >= host->pio_bytes)//fifo 的空间比 pio_bytes 大,表明这是读这个块的最后一次

                            fifo = host->pio_bytes;

                   /* because the volume of FIFO can contain the remaning block*/

                   else

                            fifo -= fifo & 3;/*round down to an even multiple of 4*/

 

                   host->pio_bytes -= fifo;// 更新还剩余的没有写完的字

                   host->pio_count += fifo;/*chang the value of pio_bytes*/

 

                   fifo = (fifo + 3) >> 2;// 将字节数转化为字数

                   /*how many words fifo contain,every time we just writ one word*/

                   ptr = host->pio_ptr;

                   while (fifo--)

                            writel(*ptr++, to_ptr);// 写往 FIFO.

                   host->pio_ptr = ptr;

         }

注释一:注意, MMC 核心为 mrq->data 成员分配了一个 struct scatterlist 的表,用来支持分散聚集,使用这种方法,这样使物理上不一致的内存页,被组装成一个连续的数组,避免了分配大的缓冲区的问题

我们看代码

  1. if (host->pio_sgptr >= host->mrq->data->sg_len) { 
  2. dbg(host, dbg_debug, "no more buffers (%i/%i)/n"
  3. host->pio_sgptr, host->mrq->data->sg_len); 
  4. return -EBUSY
  5. sg = &host->mrq->data->sg[host->pio_sgptr]; 
  6. *bytes = sg->length;// 页缓冲区中的长度 
  7. * pointer = sg_virt(sg); //将页地址映射为虚拟地址 
  8. host->pio_sgptr++; //这里表明我们的程序又完成了一次映射 

这样,每一个 mmc 请求,我们只能处理 scatterlist 表中的一个页(块)。因此,完成一次完整的请求需要映射 sg_len 次

再来总结一下一个 mmc 写设备请求的过程:

在 s3cmci_prepare_pio 中我们第一次先调用 do_pio_write ,如果 FIFO 空间大于 3 ,且能够获取到 scatterlist ,则我们就开始往 FIFO 写数据,当 FIFO 空间小于 3 ,则使能 TXFIFOHALF 中断,在中断服务程序中,如果检测到 TFDET 表明又有 FIFO 空间了,则关闭 TXFIFOHALF 中断,并调用 do_pio_write 进行写。

数据流向如下: scatterlist-------->fifo---------->sdcard

一个 mmc 读设备请求的过程 数据流向如下 : sdcard --------> fifo ---------->scatterlist ,

????关于读数据的过程,中断的触发不是很清楚, s3cmci_prepare_pio 中 enable_imask(host, S3C2410_SDIIMSK_RXFIFOHALF , S3C2410_SDIIMSK_RXFIFOLAST); 但如果没从 SD 卡中读数据,怎么会引发这个中断呢?是由 S3C2410_SDIIMSK_RXFIFOLAST 引起的吗

接下来我们分析一下中断服务程序:

static irqreturn_t s3cmci_irq(int irq, void *dev_id)

该程序先获取所有的状态寄存器:

  1. mci_csta = readl(host->base + S3C2410_SDICMDSTAT); 
  2. mci_dsta = readl(host->base + S3C2410_SDIDSTA); 
  3. mci_dcnt = readl(host->base + S3C2410_SDIDCNT); 
  4. mci_fsta = readl(host->base + S3C2410_SDIFSTA); 
  5. mci_imsk = readl(host->base + host->sdiimsk); 

这些将作为中断处理的依据。

如果不是 DMA 模式,则处理数据的收发

  1. if (!host->dodma) { 
  2.   if ((host->pio_active == XFER_WRITE) && 
  3. (mci_fsta & S3C2410_SDIFSTA_TFDET)) {
  4. /*This bit indicates that FIFO data is available for transmit when 
  5. DatMode is data transmit mode. If DMA mode is enable, sd
  6. host requests DMA operation.*/ 
  7. disable_imask(host, S3C2410_SDIIMSK_TXFIFOHALF); 
  8.   tasklet_schedule(&host->pio_tasklet); 
  9.  
  10. //注意我们采用 tasklet 这种延时机制来减少中断服务的时间,
  11. //延时函数 pio_tasklet 中调用了 do_pio_write 和 了 do_pio_read 
  12.   host->status = "pio tx"
  13. }
  14.  
  15.    if ((host->pio_active == XFER_READ) && 
  16. (mci_fsta & S3C2410_SDIFSTA_RFDET)) { 
  17.   disable_imask(host, 
  18.   S3C2410_SDIIMSK_RXFIFOHALF | 
  19.   S3C2410_SDIIMSK_RXFIFOLAST); 
  20.   tasklet_schedule(&host->pio_tasklet); 
  21.   host->status = "pio rx"

接下来的很多代码是对其他的一些类型中断的处理。

最后来分析 DMA 模式:这种模式下不需要 CPU 的干预。 S3C2440 的 DMA 有 4 个通道,我们选择了通道 0

  1. static int s3cmci_prepare_dma(struct s3cmci_host *host, struct mmc_data *data) 
  2.   int dma_len, i; 
  3.   int rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0; 
  4.  
  5.   BUG_ON((data->flags & BOTH_DIR) == BOTH_DIR); 
  6.  
  7.   s3cmci_dma_setup(host, rw ? S3C2410_DMASRC_MEM : S3C2410_DMASRC_HW);// 注一 
  8.   s3c2410_dma_ctrl(host->dma, S3C2410_DMAOP_FLUSH); 
  9.   dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, 
  10.      (rw) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); // 注二 
  11.  
  12.   if (dma_len == 0) 
  13.      return -ENOMEM; 
  14.   host->dma_complete = 0; 
  15.   host->dmatogo = dma_len; 
  16.   for (i = 0; i < dma_len; i++) { 
  17.      int res; 
  18.      dbg(host, dbg_dma, "enqueue %i:%u@%u/n", i, 
  19.        sg_dma_address(&data->sg[i]), 
  20.        sg_dma_len(&data->sg[i])); 
  21.      res = s3c2410_dma_enqueue(host->dma, (void *) host, 
  22.        sg_dma_address(&data->sg[i]), 
  23.        sg_dma_len(&data->sg[i])); 
  24.  
  25.  
  26.      if (res) { 
  27.        s3c2410_dma_ctrl(host->dma, S3C2410_DMAOP_FLUSH); 
  28.        return -EBUSY; 
  29.      } 
  30.   } 
  31.   s3c2410_dma_ctrl(host->dma, S3C2410_DMAOP_START); 
  32.   
  33.   return 0; 

注一 : 这个函数先调用 s3c2410_dma_devconfig 来配置 DMA 源 / 目的的意见类型和地址,注意我们这里的设备地址 host->mem->start + host->sdidata 实际上就是 SDIDATA 寄存器的地址值,如果是写 SD 卡,则为目的地址,否则为源地址。然后调用 s3c2410_dma_set_buffdone_fn(host->dma, s3cmci_dma_done_callback);

设置 dma 通道 0 的回调函数。

注二

dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,(rw) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);

这里进行分散 / 聚集映射( P444,LDD3 ) , 返回值是传送的 DMA 缓冲区数,可能会小于 sg_len ,也就是说 sg_len 与 dma_len 可能是不同的。

sg_dma_address(&data->sg[i]), 返回的是总线( DMA )地址, sg_dma_len(&data->sg[i])); 返回的是缓冲区的长度。

最后调用 s3c2410_dma_enqueue(host->dma, (void *) host, sg_dma_address(&data->sg[i]), sg_dma_len(&data->sg[i]));

对每个 DMA 缓冲区进行排队,等待处理。

s3c2410_dma_ctrl(host->dma, S3C2410_DMAOP_START); 启动 DMA

这样 DMA 缓冲区就和 scatterlist 联系起来,当写数据时, scatterlist 中的数据由于上面的映射关系会直接“拷贝”到 DMA 缓冲区,当读数据时则反之。整个过程不需要 CPU 干预,自动完成。

以上就是针对 mini2440 HOST 部分的内容。

4 、 CORE 层分析:

CORE 层完成了不同协议和规范的实现,并为 HOST 层的驱动提供了接口函数,在 HOST 层我们曾经调用的两个函数:

mmc_alloc_host(sizeof(struct s3cmci_host), &pdev->dev);

mmc_add_host(mmc);

我们就从这两个函数入手,来分析 CORE 层与 HOST 层是如何交互的。

先看 mmc_alloc_host 函数:

    dev_set_name(&host->class_dev, "mmc%d", host->index);

         host->parent = dev;

         host->class_dev.parent = dev;

         host->class_dev.class = &mmc_host_class;

         device_initialize(&host->class_dev);

这几句是将导致在 /SYS/CLASS/mmc_host 下出现 mmc0 目录,添加类设备,在 2.6.21 后的版本中,类设备的 class_device 已近被 device 所取代, LDD3P387 的内容有点 OUT 了

       INIT_DELAYED_WORK(&host->detect, mmc_rescan);

初始化了一个工作队列,延时函数为 mmc_rescan ,这个延时函数很重要,下面要详细分析

最后对 host 做一些默认配置,不过这些配置在 probe 函数的后面都被重置了。

分析 mmc_add_host(mmc);

device_add(&host->class_dev); 这里才真正的添加了类设备。

其中调用了 mmc_start_host

void mmc_start_host(struct mmc_host *host)

{

       mmc_power_off(host);

       mmc_detect_change(host, 0);

}

mmc_power_off 中对 ios 进行了设置,然后调用 mmc_set_ios(host);

host->ios.power_mode = MMC_POWER_OFF;

       host->ios.bus_width = MMC_BUS_WIDTH_1;

       host->ios.timing = MMC_TIMING_LEGACY;

       mmc_set_ios(host);

mmc_set_ios(host) 中的关键语句 host->ops->set_ios(host, ios); 这里的 set_ios 实际上就是我们前面所提到的 .set_ios  = s3cmci_set_ios,

再看 mmc_detect_change(host, 0); 最后一句是

       mmc_schedule_delayed_work(&host->detect, delay);

实际上就是调用我们前面说的延时函数 mmc_rescan

mmc_power_up(host);// 这个函数实际上与前面的 mmc_power_off 类似,不过设置了启动时需要的 ios

                   mmc_go_idle(host);

                   //CMD0 , from inactive to idle

                   mmc_send_if_cond(host, host->ocr_avail);// 发送 SD_SEND_IF_COND ,是使用 SD2.0 卡才需要设置的命令

/*suppot for 2.0 card*/

                     * ...then normal SD...

                     */

                   err = mmc_send_app_op_cond(host, 0, &ocr);

                   if (!err) {

                            if (mmc_attach_sd(host, ocr))

                                     mmc_power_off(host);

                            goto out;

                   }

蓝色部分是遵照 SD 卡协议的 SD 卡启动过程,包括了非激活模式、卡识别模式和数据传输模式三种模式共九种状态的转换,你需要参照相关规范来理解。可以先参考下面三章图对模式和状态,以及状态转换有个初步了解。

我们最初的 SD 卡的状态时 inactive 状态调用 mmc_go_idle(host) 后,发送命令 CMD0 是其处于 IDLE 状态。

我们详细分析一下 mmc_go_idle

memset(&cmd, 0, sizeof(struct mmc_command));

         cmd.opcode = MMC_GO_IDLE_STATE; MMC_GO_IDLE_STATE 就是命令 CMD0

         cmd.arg = 0; 此命令无参数

         cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;

         err = mmc_wait_for_cmd(host, &cmd, 0);// 见注 1

         mmc_delay(1);

注 1 : mmc_wait_for_cmd(host, &cmd, 0) 是用来发送命令的,我们揭开它的神秘面纱吧。

memset(&mrq, 0, sizeof(struct mmc_request));

         memset(cmd->resp, 0, sizeof(cmd->resp));

         cmd->retries = retries;

         mrq.cmd = cmd; 将命令嵌入到一个 mmc 请求中

         cmd->data = NULL;mmc 命令的 data 部分设置为 NULL, 这样表示我们要传输的是命令而不是数据

         mmc_wait_for_req(host, &mrq);// 关键部分

在该函数中调用了mmc_start_request ,而这个函数调用了host->ops->request(host, mrq) ,这个request 函数就是我们在前面分析的s3cmci_request ,这样MMC 核心第二次核HOST 层握手了

 

我们再看看:        err = mmc_send_app_op_cond(host, 0, &ocr);// 注一

                   if (!err) {

                            if (mmc_attach_sd(host, ocr))// 注二

                                     mmc_power_off(host);

                            goto out;

注一:实际上是要发送 ACMD41 命令,这条命令可以用来获取 SDcard 的允许电压范围值,由于这是一条应用命令,所有发送它之前需要发送 CMD_55 命令。执行完后 card 状态变为 READY 获取的电压范围保存在 ocr 中,再调用 mmc_attach_sd(host, ocr) 看这个电压范围是否满足主机的要求,不满足,则 power_off 主机。

注二: mmc_attach_sd 完成匹配,和初始化卡的功能

host->ocr = mmc_select_voltage(host, ocr); 看是否匹配,如果匹配则做下面初始化工作

mmc_sd_init_card(host, host->ocr, NULL); 我们分析该函数

( 1 ) mmc_all_send_cid ()这个函数发生 CMD2 ,获取卡的身份信息,进入到身份状态

(2)card = mmc_alloc_card(host, &sd_type); 分配一张 SD 类型的 card 结构

(3) 接着调用 mmc_send_relative_add, 获取卡的相对地址,注意一前卡和主机通信都采用默认地址,现在有了自己的地址了,进入到 stand_by 状态

( 4 )通过发送 SEND_CSD (CMD9) 获取 CSD 寄存器的信息,包括 block 长度,卡容量等信息

(5) mmc_select_card(card) 发送 CMD7, 选中目前 RADD 地址上的卡,任何时候总线上只有一张卡被选中,进入了传输状态 ,

( 6 )调用 mmc_app_send_scr 发送命令 ACMD51 获取 SRC 寄存器的内容,进入到 SENDING-DATA 状态

在函数中还将获得的各个卡寄存器的内容解码,并保存到 cmd 结构的相应成员中。

( 7 ) if (host->ops->get_ro(host) > 0 )

                                     mmc_card_set_readonly(card);

通过调用 get_ro(host) 函数,实际上就是 s3cmci_get_ro 函数了。 我们判断是否写保护,如果是的,将 card 状态设置为只读状态

最后再 mmc_attach_sd 里,我们将 card 结构添加进去

mmc_add_card(host->card);

dev_set_name(&card->dev, "%s:%04x", mmc_hostname(card->host), card->rca); 这里我们以 host 名 +rca 地址来命名卡我们可以看到在 /sys/devices/platform/s3c2440-sdi/mmc_host:mmc0/ 下出现 mmc0 : 0002 的目录,这个 0002 就是 rca 地址


到这里我们分析完了 MMC 的核心层。


linux-2.6.2x的mmc驱动与linux-2.6.1x的mmc驱动的区别 
在linux-2.6.2x中,mmc驱动用到的block_device_operations结构已重新定义,请看:
linux-2.6.1x:

struct block_device_operations {
    int (*open) (struct inode *, struct file *);
    int (*release) (struct inode *, struct file *);
    int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
    int (*media_changed) (struct gendisk *);
    int (*revalidate_disk) (struct gendisk *);
    struct module *owner;
};

linux-2.6.2x

struct block_device_operations {
    int (*open) (struct inode *, struct file *);
    int (*release) (struct inode *, struct file *);
    int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
    long (*unlocked_ioctl) (struct file *, unsigned, unsigned long);
    long (*compat_ioctl) (struct file *, unsigned, unsigned long);
    int (*direct_access) (struct block_device *, sector_t, unsigned long *);
    int (*media_changed) (struct gendisk *);
    int (*revalidate_disk) (struct gendisk *);
    int (*getgeo)(struct block_device *, struct hd_geometry *);
    struct module *owner;
};

注意到新版本的block驱动接口结构增加了gntgeo成员,使调用者可以直接调用此函数获得设备的几何结构。

工作流程: 
mmc驱动主要文件包括
drivers/mmc/card/block.c
drivers/mmc/card/queue.c
drivers/mmc/core/core.c
drivers/mmc/core/host.c
drivers/mmc/core/
内核启动时,首先执行core/core.c的mmc_init,注册mmc、sd总线,以及一个host class设备。接着执行card/block.c中,申请一个块设备。

数据结构: 
mmc总线操作相关函数,由于mmc卡支持多种总数据线,如SPI、SDIO、8LineMMC,而不同的总线的操作控制方式不尽相同,所以通过此结构与相应的总线回调函数相关联。

//总线操作结构
struct mmc_bus_ops {
    void (*remove)(struct mmc_host *);
    void (*detect)(struct mmc_host *);
    int (*sysfs_add)(struct mmc_host *, struct mmc_card *card);
    void (*sysfs_remove)(struct mmc_host *, struct mmc_card *card);
    void (*suspend)(struct mmc_host *);
    void (*resume)(struct mmc_host *);
};
//  mmc卡的总线操作 core/mmc.c
static const struct mmc_bus_ops mmc_ops = {
    .remove = mmc_remove,
    .detect = mmc_detect,
    .sysfs_add = mmc_sysfs_add,
    .sysfs_remove = mmc_sysfs_remove,
    .suspend = mmc_suspend,
    .resume = mmc_resume,
};
// sd卡的总线操作 core/sd.c
static const struct mmc_bus_ops mmc_sd_ops = {
    .remove = mmc_sd_remove,
    .detect = mmc_sd_detect,
    .sysfs_add = mmc_sd_sysfs_add,
    .sysfs_remove = mmc_sd_sysfs_remove,
    .suspend = mmc_sd_suspend,
    .resume = mmc_sd_resume,
};
// sdio的总线操作 core/sdio.c
static const struct mmc_bus_ops mmc_sdio_ops = {
    .remove = mmc_sdio_remove,
    .detect = mmc_sdio_detect,
};

关于总线操作的函数: 
.detect,驱动程序经常需要调用此函数去检测mmc卡的状态,具体实现是发送CMD13命令,并读回响应,如果响应错误,则依次调用.remove、detach_bus来移除卡及释放总线。

总体架构: 
kernel启动时,先后执行mmc_init()及mmc_blk_init(),以对mmc设备及mmc块模块进行初始化。
然后在挂载mmc设备驱动时,执行驱动程序中的xx_mmc_probe(),检测host设备中挂载的sd设备。此时probe函数会创建一个host设备,然后开启一个延时任务mmc_rescan()。
驱动挂载成功后,mmc_rescan()函数被执行,然后对卡进行初始化(步骤后面详细讲述)。
假如扫描到总线上挂有有效的设备,就调用相对应的函数把设备装到系统中,mmc_attach_sdio()、mmc_attach_sd()、mmc_attach_mmc()这三个函数分别是装载sdio设备,sd卡和mmc卡的。
在 sd卡中,驱动循环发送ACMD41、CMD55给卡,读取OCR寄存器,成功后,依次发送CMD2(读CID)、CMD3(得到RCA)、CMD9(读 CSD)、CMD7(选择卡)。后面还有几个命令分别是ACMD41&CMD51,使用CMD6切换一些功能,如切换到高速模式。
经过上述步骤,已经确定当前插入的卡是一张有效、可识别的存储卡。然后调用mmc_add_card()把存储卡加到系统中。正式与系统驱动连接在一起。
卡设备加到系统中后,通知mmc块设备驱动。块设备驱动此时调用probe函数,即mmc_blk_probe()函数,mmc_blk_probe() 首先分配一个新的mmc_blk_data结构变量,然后调用mmc_init_queue,初始化blk队列。然后建立一个线程 mmc_queue_thread()。

mmc_rescan:mmc_rescan()函数是在驱动装载的时候,由驱动xx_mmc_probe()调用 mmc_alloc_host()时启动的一个延时任务。 xx_mmc_probe()->mmc_alloc_host()->INIT_DELAYED_WORK(&host->detect, mmc_rescan);

core部分 
1、取得总线
2、检查总线操作结构指针bus_ops,如果为空,则重新利用各总线对端口进行扫描,检测顺序依次为:SDIO、Normal SD、MMC。当检测到相应的卡类型后,就使用mmc_attach_bus()把相对应的总线操作与host连接起来。

void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
{
    ...
    host->bus_ops = ops;
    ...
}

3、初始化卡接以下流程初始化:
a、发送CMD0使卡进入IDLE状态
b、发送CMD8,检查卡是否SD2.0。SD1.1是不支持CMD8的,因此在SD2.0 Spec中提出了先发送CMD8,如响应为无效命令,则卡为SD1.1,否则就是SD2.0(请参考SD2.0 Spec)。
c、发送CMD5读取OCR寄存器。
d、发送ACMD55、CMD41,使卡进入工作状态。MMC卡并不支持ACMD55、CMD41,如果这步通过了,则证明这张卡是SD卡。
e、如果d步骤错误,则发送CMD1判断卡是否为MMC。SD卡不支持CMD1,而MMC卡支持,这就是SD和MMC类型的判断依据。
f、如果ACMD41和CMD1都不能通过,那这张卡恐怕就是无效卡了,初始化失败。

(evilcode)
本站文章除注明转载外,均为本站原创或编译欢迎任何形式的转载,但请务必注明出处,尊重他人劳动,同学习共成长。转载请注明:文章转载自:罗索实验室 [http://www.rosoo.net/a/201207/16158.html]
本文出处:CSDN博客 作者:evilcode 原文
顶一下
(4)
100%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
将本文分享到微信
织梦二维码生成器
推荐内容