织梦CMS - 轻松建站从此开始!

罗索

Kalman滤波的原理

落鹤生 发布于 2012-01-01 19:37 点击:次 
在目标检测与跟踪过程中,为了提高跟踪速度,在确定目标的情况下,对目标在下一时刻的可能的位置进行估计,然后以这个估计的位置为中心,在一定的范围内进行目标的搜索,这样就可以缩小目标的搜索范围,提高跟踪速度.
TAG:

以下是讲的比较细致的一个资料.http://jpkc.nwpu.edu.cn/jp2005/40/ebook/kcsj/chp1/Kalman.htm

1.卡尔曼滤波器算法
在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:

X(k)=A X(k-1)+B U(k)+W(k)

再加上系统的测量值:

Z(k)=H X(k)+V(k)

上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量 值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:

X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:

P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)

式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的 covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预 测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

其中Kg为卡尔曼增益(Kalman Gain):

Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:

P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)

其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下 去。卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

下面,我会用程序举一个实际运行的例子

2.简单例子

这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。

根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:

X(k|k-1)=X(k-1|k-1) ……….. (6)

式子(2)可以改成:

P(k|k-1)=P(k-1|k-1) +Q ……… (7)

因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

http://blog.csdn.net/luckydongbin/archive/2007/03/01/1518594.aspx

Kalman滤波是个最优化递归处理算法

总结

在目标检测与跟踪过程中,为了提高跟踪速度,在确定目标的情况下,对目标在下一时刻的可能的位置进行估计,然后以这个估计的位置为中心,在一定的范围内进行目标的搜索,这样就可以缩小目标的搜索范围,提高跟踪速度.

1)最优( optimal )依赖于评价性能的判据。Kalman滤波器充分利用如下信息估计感兴趣变量当前取值:a.系统和测量装置的动态特性;b.系统噪声、测量误差和动态模型的不确定性的统计描述;c.感兴趣变量的初始条件的相关信息。(2)递归( recursive )是指kalman不需要保存先前的数据,当进行新的测量时也不需要对原来数据进行处理。

(3)filter(DPA)实际上是数据处理算法,只不过是计算中处理的程序,因此能处理离散时间测量样本,而不是连续时间输入。

•         基本假设

       采用线性模型是合理的;这是典型工程模型在某些主要点或轨迹是线性的,线性模型比非线性模型更简单。因此用线性模型来近似。

    白噪声意味着噪声值和时间不相关;白噪声指在整个频率上都有相同强度的频率特性的噪声。实际应用中将频率设为常值,带宽大大超过系统带宽的噪声称为白噪声,用高斯白噪声来模拟,可以大大简化模型。

     采用高斯密度函数在实践上是可行的。因为采用高斯函数在数学上容易处理。当缺少高阶统计量时,除了假定高斯密度外,没有更好的可以表示的函数形式。用一阶和二阶统计量完全可以描述高斯白噪声。

(luckydongbin)
本站文章除注明转载外,均为本站原创或编译欢迎任何形式的转载,但请务必注明出处,尊重他人劳动,同学习共成长。转载请注明:文章转载自:罗索实验室 [http://www.rosoo.net/a/201201/15573.html]
本文出处:CSDN博客 作者:luckydongbin 原文
顶一下
(2)
40%
踩一下
(3)
60%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
将本文分享到微信
织梦二维码生成器
推荐内容